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Blowing at bluff body base was considered under different conditions and for small 
amount of blowing this problem was solved using dividing streamline model [I]. The 
effect of supersonic blowing on the flow characteristics of the external super- 
sonic stream was studied in [2-4]. The procedure and results of the solution to 
the problem of subsonic blowing of a homogeneous fluid at the base of a body in 
supersonic flow are discussed in this paper. Analysis of experimental results 
(see, e.g., [5]) shows that within a certain range of blowing rate the pressure 
distribution along the viscous region differs very little from the pressure in the 
free stream ahead of the base section. In this range the flow in the blown sub- 
sonic jet and in the mixing zones can be described approximately by slender channel 
flow. This approximation is used in the computation of nozzle flows with smooth 
wall inclination [6, 7]. On the other hand, boundary layer equations are used to 
compute separated stationary flows with developed recirculation regions [8] in 
order to describe the flow at the throat of the wake. The presence of blowing has 
significant effect on the flow structure in the base region. An increasing blow- 
ing rate reduces the size of the recircu]ation region [9] and increases base pres- 
sure. This leads to a widening of the flow region at the throat, usually described 
by boundary-layer approximations. At a certain blowing rate the recirculation re- 
gion completely disappears which makes it possible to use boundary-layer equations 
to describe the flow in the entire viscous region in the immediate neighborhood of 
the base section. 

I. Consider two-dimensional flow developed with two interacting supersonic flows past 
the base from which a finite amount of subsonic fluid is blown. The fluids in the supersoniv 
streams and the subsonic jet are assumed perfect and homogeneous with constant specific heats. 
The stagnation temperatures in the streams and the jet could in general be different. The 
flow in the neighborhood of the base is, as usual, divided into inviscid external supersonic 
flow regions and "viscous" flow region which includes the potential core in the blown jet and 
mixing regions which become near wake viscous flow region. The effect of viscosity on the 
inviscid flow characteristics is taken into consideration through the inclusion of displace- 
ment thickness for the effective body [10]. The idealized picture for the given flow is 
shown in Fig. I, where I and II are inviscid flow regions, III is the "viscous" flow region, 
Yl and Y2 are asymptotic boundaries of viscous regions, y~ and y* are boundaries of effec- 
tive displacement body. Inviscid external flow characteristics are assumed known in the sec- 
tion AzA e. The gasdynamic parameters in the equivalent inviscid flows are found by integrat- 
ing Euler equations. The flow in the "viscous" region is described through boundary-layer 
equations. In cylindrical coordinates these equations in nondimensional variables 

x=x/R, ,  y=y /R , ,  g=u/U,, ~=vlU,, p = p / p , ,  77=tIIU~, , -T 

= T / T , ,  7~ = p~/ (o ,U~) ,  ~ = ~@, ,  I4e, = o , U , R , ' / ~ t , ,  

are written in the following form with the addition of equations of state and a relation for 
viscosity 

PUT7 + pv ~----- dx + YJbt ; e,e.v~ ay T (1.2) 
aH a .  1 {_~y,[ ,_~_o~] ( , ,  j lau\~l  

Pu~+PV--~y = Re,y# Y Pr OyJ +~t t--"-~')Y 17y)~; (1 .3 )  
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where j = 0 corresponds to the planar case and j = I to the axisymmetric case. The following 
nomenclature is used: u, v, p, Pe, h, and ~ are the streamwise and transverse velocity com- 
ponents, density, pressure, static enthalpy, and the coefficient of viscosity, respectively; 
H = u2/2 + h; y = Cp/C V is a constant; Pr is the Prandtl number; Re is Reynolds number. The 
bars overnondimensional parameters have been dropped in writing the system of Eqs. (I. I)- 
(I .4); the index * refers to the reference parameters used in nondimensionalizing and the 
index e indicates the value of the parameters at the edge of the equivalent inviscid flows. 

The system of equations (I .I)-(I .4) is solved with the following boundary conditions: 

u = uea, H = H~h for y == Yk, k ~ ~, 2: 

k = 1 c o r r e s p o n d s  to  the  boundary  c o n d i t i o n  a t  t he  i n n e r  boundary  of  the  " v i s c o u s "  r e g i o n  
and k = 2 i n d i c a t e s  o u t e r  b o u n d a r y .  For  symmet r i c  ' , ' v i scous"  r e g i o n  bounda ry  c o n d i t i o n s  a t  
the  i n n e r  b o u n d a r y  a r e  w r i t t e n  in  t he  form 

Ou/Oy = OHlOy = v = O, y = y~--~ O. 

I n  the  g e n e r a l  unsymmet r i c  " v i s c o u s "  r e g i o n  c a s e ,  t he  b o u n d a r y  c o n d i t i o n  f o r  t r a n s v e r s e  v e -  
l o c i t y  component a p p r e c i a b l y  depends on the  c h o i c e  of  the  e f f e c t i v e  body ,  m a t c h i n g  s o l u t i o n s  
a t  t he  b o u n d a r i e s ,  and w i l l  be d i s c u s s e d  be low.  

I n i t i a l  c o n d i t i o n s  f o r  the  sy s t em of e q u a t i o n s  ( 1 . 1 ) - ( 1 . 4 )  a r e  s p e c i f i e d  a t  t he  base  
section in the form 

u(0, y) = uo(y), H(O, y) = Ho(y).  (1 .5 )  

E q u a t i o n s  (1 .5 )  t a k e  i n t o  a c c o u n t  n o n u n i f o r m i t y  of  p a r a m e t e r s  in  the  j e t  as  w e l l  as the  p r e s -  
ence of  the  i n i t i a l  b o u n d a r y  l a y e r .  The p r e s s u r e  d i s t r i b u t i o n  pe(x)  i s  d e t e r m i n e d  by s o l v i n g  
the  i n t e r a c t i o n  p rob lem Of the  " v i s c o u s "  r e g i o n  w i t h  the  e x t e r n a l  e q u i v a l e n t  i n v i s c i d  f l o w s .  
The b o u n d a r i e s  of  the  d i s p l a c e m e n t  body i s  d e t e r m i n e d  as f o l l o w s :  

Yh 

= ~,,,h + (t + ]) 1 p~h~r ! ( 1 . 6 )  
Ymh 

where Ymk is the streamline of constant mass dividing the fluid mass entering the base region 
because of blowing from the total mass occupied by the "viscous" region. In order to elimi- 
nat~e the unknown Ymk to determine the displacement boundary (1.6), the continuity equation 
is integrated across the viscous region with the limits [Ymk, Yk]: 

Yh 

t d p u y 3 d y = y ~ \  dx - - t g e h '  k = t , 2 ,  tgO=--v .  
OehUek dx u 

Ymh 

Since  Ymk(X) in  (1 .7 )  i s  the  s t r e a m l i n e ,  dymk/dx = t an0mk a l o n g  i t .  
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Combining (1.6) and (1.7), and making the slender channel approximation 3p/3y = O, we 
get a relation connecting the direction of the velocity vector of the equivalent inviscid 
flow with respect to the displacement boundary and the pressure gradient: 

dy~ g~+l y~j+l 2 dp e �9 - -  Mea--i i k = i  2. ( 1 . 8 )  
y~ tg Oh = y ~  dz ] q- I 2 ?Pe dx ' ' Mek 

The e q u a t i o n  (1 .8) i s  a sys t em of e q u a t i o n s  f o r  the  unknown f u n c t i o n s  Oz(x) ,  0 2 ( x ) ,  p e ( x ) .  
In order to obtain the third, closure equation, Eq. (1.1) is transformed according to [11] 
to the form 

o j i @e M ~ - t ~  ( ~ _ ~ )  ~ o |Y 

- 0 7 ~  - Y  , [ ~ )  ~ - 0 ,  M = - (1.9) 
Y L ' a 

and Eq. (1.9) is integrated across the "viscous" region to get 

" tg 01) dPe ~p, (,y~ tg 02 - -  y~ + B ~ + A = 0. (1 .10 )  

A and B have t he  form 

Y2 

Yl 

Y2 

B ~ M2 -- t . i d- - - -~g--  y y; 
Yl 

tan01 and tangz are eliminated from (1.8) and (1.10) by writing the resulting equation for 
dPe /dx :  ( ") *J d zt* *) d!q 

dp e TPe g2 ~ --  !11 ~ -[- A 

d~-~ - -  a ' ( 1 . 1  1) 

where 

[ ~  -- Mel -- I ] i o [ M~'-- t ~ j+ldy M~2 i y~j+l 

A (t+.t,lw  jy  J _ + M~ ~ " Met 

Equation ( 1 . 1 1 )  does not depend on the choice of the asymptotic boundaries of the "viscous" 
region Yl and yz since the derivatives of gasdynamic parameters in the viscous region approach 
zero as y * Yl, y2 [8, 10] in the present approximation. 

Before formulating the viscous-inviscid interaction problem, let us consider in greater 
detail the specification of boundary conditions for the transverse velocity component at y = 
yl z 0. In this case the velocity component v is determined from Eq. (1.8) for k = I and v = 
utan0 for the given values of yl, y~, and dpe/dx. The variation in v across the "viscous" 
region is found by integrating the first order Eq. (1.1). The condition for the transverse 
velocity component derived from Eq. (1.8) at k = 2 will be fulfilled automatically for dpe/dx 
determined from Eq. (1.11). 

Equation (1.11) can be considered a differential equation in the unknown functions Pe, 
y~, and y~. The remaining two equations are obtained by the determination of the flow in 
the inviscid, equivalent supersonic flows. In the general case, the solution to Euler equa- 
tions results in the functional relation: 

d * )  Yh 
fh pe,-2E- x = 0 ,  k - - i ,  2. (1 .12 )  
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In the case when the external supersonic flow is described by the solution for a simple wave, 
functional relations (1.12) have the form of Prandtl-Meyer equations: 

( 2 , 1 /  
+ \ - 7 7  dz~ = ( - -  t )  h ~ ~ dx ' 

MeN 

Thus, the system of three differential equations (1.11) and (1.12) or (1.11) and (1.13) for 
the case of a simple wave completely determines the interacting flow. This system will in 
the future be referred to as the system of viscous-inviscid interaction equations. 

The system of viscous-inviscid interaction equations has a singularity associated with 
the determinant becoming zero at some downstream location. Numerical investigation of the 
singularity within a wide range of parameters shows that this point corresponds to a "saddle" 
point type of singularity. Analogous singularities arise in separated flow problems with 
developed recirculation regions, encountered in solving boundary layer equations using inte- 
gral methods [8] and also in nozzle flows, e.g., [7, 12]. The generation of singularities 
is described in detail in these studies and it can be used in the present investigation. 

2. As an example for the application of the above-described method to compute viscous- 
inviscid interaction and to study the effect of finite strength blowing on the base flow char- 
acteristics we considered uniform supersonic flow past a semiinfinite flat plate of finite 
width R,. Subsonic blowing was introduced through the trailing edge of the plate with suffi- 
cient strength to prevent the formation of recirculation flows in the "viscous" region. The 
study was limited in the investigation of the region defined by t~e separation of external 
flow from the trailing edge and zero initial boundary-layer thickness. The distribution of 
parameters in the external inviscid flows was fully determined by specifying Mach numbers 
MI and M2, static pressures Pl and p2, and total enthalpy HI and H2 at the cross section. 
Inviscid equivalent flows past the effective body were described by Prandtl-Meyer equations 
for a simple wave. The gas in the external flow and in the jet was assumed perfect with 
y = 1.4 and a Prandtl number Pr = 0.72. The coefficient of viscosity was determined by the 
relation M/M, = (T/T*) m where the index m was assumed 0.5. Initial conditions for the sys- 
tem of Eqs. (1.1)-(1.4) were specified at the trailing edge section in the form of a para- 

metric family in terms of the base pressure Pb = Pe (x = 0): 

U 0 

1 

1 

2 . Pb "~ 
X I + ~ _ ~ )  

1 

-?--I qbi + 2Hbl ? - - i  qbl' 
1 

2 t - -  Pb ? 
i 4- ( ? _ i )  M~ Z ' 

H 0 

HI, y ' ~  a, 

Hbl, a ~ y ~ . ~ b ,  

H2, y > b. 

Here a and b are the ordinates of the trailing edge section b = a + R,; qbl the blowing 
~ ~2R~ strength defined by qbl = qlp,U, ~, where Q is the mass of blown gas; Hbl is the total enthalpy 

of the blown jet. Boundary-layer equations describing the flow in the "viscous" region were 
integrated numerically using four-point implicit difference scheme [13] and the viscous- 
inviscid interaction Eqs. (1.11) and (1.13) were integrated using Euler scheme [14]. The 
algorithm for computing the flow consisted of the determination of the singular integral 
curve of the system of viscous-inviscid interaction equations. Since the flow character- 
istics in the "viscous" region continuously depend on the initial conditions, the choice of 
one or the other integral curve is completely determined by the value of the free parameter 
Pb" The procedure for the determination of the singular integral curve is accomplished by 

the choice of this parameter. 

Computed results are shown in Figs. 2-5. In all the computations the step size for the 
integration of boundary-layer equations was 0.025 and the number of computational grid points 
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in the transverse direction was 51. A typical picture of the behavior of integral curves in 
the neighborhood of the singularity in symmetric isoenergic flow past a flat plate is shown 
in Fig. 2 where the curves I-7 correspond to values of pb/p~ = 0.55; 0.60; 0.65; 0.65078; 
0.70; 0.675; and 0.65156. The following were the values of the characteristic flow param- 
eters: a = --I, b = I, MI = M2 = Moo = 2.0, Hi = H2 = Hbl=0.5 + I/((y -- I)M~), pl = p2 = 
I/(yM~), qbl =0"05, Re~ = 500. Computed results for the effect of blowing strength on the 
base pressure at Re~ = 500; 1000; and 5000 (curves I-3, respectively) at the same reference 
conditions are shown in Fig. 3. The effect of nonisoenergic flow due to the blowing of hot 
jet on the base pressure is shown in Fig. 4 for the same values of Re~. The flow is assumed 
to be symmetrical. It is seen from Figs. 3 and 4 that an increase in blowing and the temper- 
ature of the blown gas leads to an increase in base pressure at different Reynolds numbers. 
The effect of blowing strength in the case of an unsynunetric flow past the plate is shown in 
Fig. 5, where curves I and 2 are for Re~ = 500 and 1000, respectively. The reference quan- 
tities are as follows: a = 0.5, b = I, M~ = 3.0, M2 = 2.0, Hi = H2 = Hbl =0.5 + ((y -- I)M~) -I 
Pl = P2 = I/(yM~). As seen from Fig. 5, an increase in the velocity of one of the flows 
leads to an increase in gas mass entrained by the flow from the jet which results in a de- 
crease in base pressure when compared to the symmetric flow case. The geometry of the effec- 
tive displacement body corresponding to the above numerical example is shown in Fig. I for 
qbl =0"05 and Re~ = 1 0  3 . 
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